145 research outputs found

    Achieving secrecy without knowing the number of eavesdropper antennas

    Get PDF
    The existing research on physical layer security commonly assumes the number of eavesdropper antennas to be known. Although this assumption allows one to easily compute the achievable secrecy rate, it can hardly be realized in practice. In this paper, we provide an innovative approach to study secure communication systems without knowing the number of eavesdropper antennas by introducing the concept of spatial constraint into physical layer security. Specifically, the eavesdropper is assumed to have a limited spatial region to place (possibly an infinite number of) antennas. From a practical point of view, knowing the spatial constraint of the eavesdropper is much easier than knowing the number of eavesdropper antennas. We derive the achievable secrecy rates of the spatially-constrained system with and without friendly jamming. We show that a non-zero secrecy rate is achievable with the help of a friendly jammer, even if the eavesdropper places an infinite number of antennas in its spatial region. Furthermore, we find that the achievable secrecy rate does not monotonically increase with the jamming power, and hence, we obtain the closed-form solution of the optimal jamming power that maximizes the secrecy rate.Comment: IEEE transactions on wireless communications, accepted to appea

    PSD Estimation of Multiple Sound Sources in a Reverberant Room Using a Spherical Microphone Array

    Full text link
    We propose an efficient method to estimate source power spectral densities (PSDs) in a multi-source reverberant environment using a spherical microphone array. The proposed method utilizes the spatial correlation between the spherical harmonics (SH) coefficients of a sound field to estimate source PSDs. The use of the spatial cross-correlation of the SH coefficients allows us to employ the method in an environment with a higher number of sources compared to conventional methods. Furthermore, the orthogonality property of the SH basis functions saves the effort of designing specific beampatterns of a conventional beamformer-based method. We evaluate the performance of the algorithm with different number of sources in practical reverberant and non-reverberant rooms. We also demonstrate an application of the method by separating source signals using a conventional beamformer and a Wiener post-filter designed from the estimated PSDs.Comment: Accepted for WASPAA 201

    Analysis of Degrees of Freedom of Wideband Random Multipath Fields Observed Over Time and Space Windows

    Full text link
    In multipath systems, available degrees of freedom can be considered as a key performance indicator, since the channel capacity grows linearly with the available degrees of freedom. However, a fundamental question arises: given a size limitation on the observable region, what is the intrinsic number of degrees of freedom available in a wideband random multipath wavefield observed over a finite time interval? In this paper, we focus on answering this question by modelling the wavefield as a sum of orthogonal waveforms or spatial orders. We show that for each spatial order, (i) the observable wavefield is band limited within an effective bandwidth rather than the given bandwidth and (ii) the observation time varies from the given observation time. These findings show the strong coupling between space and time as well as space and bandwidth. In effect, for spatially diverse multipath wavefields, the classical degrees of freedom result of "time-bandwidth" product does not directly extend to "time-space-bandwidth" product.Comment: 9 pages, 2 figures, Accepted in 2014 IEEE Workshop on Statistical Signal Processin

    Band Limited Signals Observed Over Finite Spatial and Temporal Windows: An Upper Bound to Signal Degrees of Freedom

    Full text link
    The study of degrees of freedom of signals observed within spatially diverse broadband multipath fields is an area of ongoing investigation and has a wide range of applications, including characterising broadband MIMO and cooperative networks. However, a fundamental question arises: given a size limitation on the observation region, what is the upper bound on the degrees of freedom of signals observed within a broadband multipath field over a finite time window? In order to address this question, we characterize the multipath field as a sum of a finite number of orthogonal waveforms or spatial modes. We show that (i) the "effective observation time" is independent of spatial modes and different from actual observation time, (ii) in wideband transmission regimes, the "effective bandwidth" is spatial mode dependent and varies from the given frequency bandwidth. These findings clearly indicate the strong coupling between space and time as well as space and frequency in spatially diverse wideband multipath fields. As a result, signal degrees of freedom does not agree with the well-established degrees of freedom result as a product of spatial degrees of freedom and time-frequency degrees of freedom. Instead, analogous to Shannon's communication model where signals are encoded in only one spatial mode, the available signal degrees of freedom in spatially diverse wideband multipath fields is the time-bandwidth product result extended from one spatial mode to finite modes. We also show that the degrees of freedom is affected by the acceptable signal to noise ratio (SNR) in each spatial mode.Comment: Submitted to IEEE Transactions on Signal Processin

    MIMO Channel Correlation in General Scattering Environments

    Full text link
    This paper presents an analytical model for the fading channel correlation in general scattering environments. In contrast to the existing correlation models, our new approach treats the scattering environment as non-separable and it is modeled using a bi-angular power distribution. The bi-angular power distribution is parameterized by the mean departure and arrival angles, angular spreads of the univariate angular power distributions at the transmitter and receiver apertures, and a third parameter, the covariance between transmit and receive angles which captures the statistical interdependency between angular power distributions at the transmitter and receiver apertures. When this third parameter is zero, this new model reduces to the well known "Kronecker" model. Using the proposed model, we show that Kronecker model is a good approximation to the actual channel when the scattering channel consists of a single scattering cluster. In the presence of multiple remote scattering clusters we show that Kronecker model over estimates the performance by artificially increasing the number of multipaths in the channel.Comment: Australian Communication Theory Workshop Proceedings 2006, Perth Western Australia. (accepted

    Real-time separation of non-stationary sound fields on spheres

    Get PDF
    The sound field separation methods can separate the target field from the interfering noises, facilitating the study of the acoustic characteristics of the target source, which is placed in a noisy environment. However, most of the existing sound field separation methods are derived in the frequency-domain, thus are best suited for separating stationary sound fields. In this paper, a time-domain sound field separation method is developed that can separate the non-stationary sound field generated by the target source over a sphere in real-time. A spherical array sets up a boundary between the target source and the interfering sources, such that the outgoing field on the array is only generated by the target source. The proposed method decomposes the pressure and the radial particle velocity measured by the array into spherical harmonics coefficients, and recoveries the target outgoing field based on the time-domain relationship between the decomposition coefficients and the theoretically derived spatial filter responses. Simulations show the proposed method can separate non-stationary sound fields both in free field and room environments, and over a longer duration with small errors. The proposed method could serve as a foundation for developing future time-domain spatial sound field manipulation algorithms.Comment: 34 pages, 15 figure
    • …
    corecore